Somya D. Mohanty, Thomas P. McCoy, Prashanti Manda, Deborah A. Lekan, Marjorie Jenkins
2020 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), pp. 2027-2035, June, 2020.
Publication year: 2020

Healthcare costs that can be attributed to unplanned readmissions are staggeringly high and negatively impact health and wellness of patients. In the United States, hospital systems and care providers have strong financial motivations to reduce readmissions in accordance with several government guidelines. One of the critical steps to reducing readmissions is to recognize the factors that lead to readmission and correspondingly identify at-risk patients based on these factors. The availability of large volumes of electronic health care records make it possible to develop and deploy automated machine learning models that can predict unplanned readmissions and pinpoint the most important factors of readmission risk. While hospital readmission is an undesirable outcome for any patient, it is more so for medically frail patients. Here, we develop and compare four machine learn- ing models (Random Forest, XGBoost, CatBoost, and Logistic Regression) for predicting 30-day unplanned readmission for patients deemed frail (Age ≥ 50). Variables that indicate frailty, comorbidities, high risk medication use, demographic, hospital and insurance were incorporated in the models for prediction of unplanned 30-day readmission. Our findings indicate that CatBoost outperforms the other three models (AUC 0.80) and prior work in this area. We find that constructs of frailty, certain categories of high risk medications, and comorbidity are all strong predictors of readmission for elderly patients.