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Abstract—Information propagation in online social networks
has drawn a lot of attention from researchers in different
fields. While prior works have studied the impact and speed
of different information propagation in various networks, we
focus on the potential interactions of two hypothetically opposite
pieces of information, negative and positive. We experiment the
amount of time that is allowed for the positive information
to be distributed with wide enough impact after the negative
information and different selection strategies for positive source
nodes. Our results enable the selection of a set of users
based on a limited operating budget to start the spread of
positive information as a measure to counteract the spread
of negative information. Among different methods, we identify
that both eigenvector and betweenness centrality are effective
selection metrics. Furthermore, we quantitatively demonstrate
that choosing a larger set of nodes for the spread of positive
information allows for a wider window of time to respond in
order to limit the propagation of negative information to a
certain threshold.

Index Terms—information propagation; online social net-
works; centrality

I. INTRODUCTION

Online social network sites are a place where information,
opinions, thoughts, and feelings can be shared to millions of
people almost instantaneously. With its 330 million users,
of which 100 million are said to be active daily, Twitter
has and will continue to play an instrumental role in this
new way of information sharing [1]. Studies have been
used to analyze the spread of information, sometimes called
information propagation [2], through social networks such as
Twitter, e.g., [3] [4], [5], [6]. Unlike these prior works, we
look at the spread of two counter-acting sets of information
propagating through a sub-network of Twitter simultaneously.

It is common for both positive and negative information! to
spread through online social networks. Vosoughi et al. studied
the spread of opposite types of information, although not
the interactions among them [7]. There are entities and
companies that run into the problem of negative, sometimes
false, information about them spreading in online social
networks, e.g. [8]. To counteract, positive information can
be distributed and spearheaded throughout the network. The
question here is how such a maneuver can be optimized with
limited resources, e.g., monetary and time budget.

'Note that we leave the interpretation of “positive” and “negative”
information to actual applications but just use two opposites to demonstrate
their potential interactions.

Some prior works chose users’ PageRank [3] [4], which
require extra user information. In [9], node degree and
centrality are used to make selections. Similar work has been
proposed by Budak et. al. [10], where the authors compare
greedy and degree centrality based node selection to limit the
spread of mis-infromation across social networks. Instead, we
look at eigenvector and betweenness centrality in this work.
Our study is based on a snapshot of a small Twitter user
subset pulled from a data set of 855,825 tweets on the topic
discussed in [8]. The snapshot is then used to generate a
directed graph for information flow. The edges are weighted
based on our observed interactions, such as replying to a
tweet and being mentioned in a tweet. The directed graph
is then used to experiment two opposite sets of information
flowing and counteracting with each other. We specifically
focus on the positive information source selection strategies
such as eigenvector and betweenness centrality.

Section II of this paper dives into the methods used to
construct the network. It also takes a deeper look at the
propagation model and algorithm that is used. Section III
explains how the single and double information propagation
experiments are executed and then analyzes the results with
discussions. We conclude our work in Section IV.

II. METHODOLOGY

In order to observe the propagation of information across
a social graph, a user-to-user connectivity network is needed.
We explain the details of our work in the following.

A. Graph Construction

The data set of the tweets was collected from Twitter using
Twitter’s API [11] and it consists of 855,825 tweets. These
tweets are searched within several days of the United Airlines
incident [1] (search keyword “united”). The raw data contains
username, date, retweets, favorites, text, geo, mentions, hash-
tags, id, and permalink, where each row represents a single
tweet.

The graph is then constructed as follows: First, the set of
unique usernames was obtained, and a node was assigned to
each username. Then each row is read in and edges were
created where applicable. Initially, we generated 4 types of
edges as explained below. Then we converted multiple edges
between a pair of nodes ¢ and j to a single edge (3,j),
and computed the probability of propagation along each edge

P(i, ).
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We use the independent cascade model [2] for information
propagation. In order to help determine the probabilities
of influence when running this model, 4 different types of
directed edges were created. For each tweet

1) Each replied-to user was connected to the tweet owner.
This represents the flow of information from the
replied-to user to the tweet owner.

Each replied-to user was connected to other replied-to
users that had replied to their tweet. This represents
the flow of information passing to the users that have
previously replied in the current thread of tweets that
the tweet owner replied to.

The tweet owner was connected to each mentioned user
in their tweet. This represents the flow of information
from the tweet owner to the users they mention in their
tweet.

Each user mentioned in the current tweet were con-
nected to each other with a bi-directional edge.

2)

3)

4)

Using these methods to construct a network from the
Twitter data, the end result had 479,543 unique nodes and
518,784 unique directed edges (of types 1, 2, 3, and 4). It
was found that, of the 479,543 nodes, 243,471 of them were
contained in the largest connected component of the network.
The rest of the nodes were contained in connected compo-
nents that ranged from 1 to 45 nodes. There were 190,085
nodes that had no adjacent nodes at all. For our analysis of
information propagation, nodes that are not contained in the
largest connected component are omitted.

B. Determining Edge Weights and Influence Probability

Towards the determination of information influence proba-
bility, each of the edge types (4 different edge types) needed
to be associated with corresponding edge weights. More
specifically, the weights would influence the probability of
propagation of information based on the order of importance
of different edge types. The reply to edge (type 1) was
considered here to be of highest importance with an edge
weight of 1000. This is due to the tweet owner taking the time
to hit reply in a thread of tweets, so the tweet owner is clearly
absorbing information contained in the original message. The
edge with the next heaviest weight is the type 2 edge, with
an associated weight of 100. As discussed above, these edges
are similar to that of type 1, but they do not carry as much
weight since they are from a previous time than that of the
current tweet from the tweet owner. The type 3 edge follows
up with an associated weight of 10. This edge type does not
carry as much weight as type 1 and type 2 edges since when
mentioned in a tweet, the mentioned user may or may not
end up going to look at the tweet. Last, the edge that carries
the least amount of weight is type 4 with a value of 1. This
was determined since it will be less likely for information to
pass between users that were mentioned in a tweet together.

In the creation of the network, it was found that there
are instances where an edge connection between the same
two users was repeated. When there are repetitions of the
same edge, they could be of the same edge type or different.
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With this being the case, all edges, including their repeated
instances, were stored in the database instead. Now, when
the edges were read in from the database, the repeated edges
with their respective edge weights were aggregated to form
a unique edge with total weight of all similar edges.

In order to calculate each edge’s associated influence prob-
ability (this term can be found in [2]), a normal distribution
curve was used. All total edge weights were used in creating
the normal distribution curve. An edge’s weight was then
inserted into a CDF to calculate the influence probability
that information could spread to the destination node, thus
infecting it. In this paper, we use the terms influence and
infect interchangeably. The mean of the total edge weight
distribution is 868.5, while the standard deviation is 1251.2.

C. Propagation models and algorithms

Within the created network of users, each edge now has
an associated influence probability. The aim of our study
was to analyze the propagation of information through such
a network, where the goal is to maximize influence of the
information to the nodes within the network. To identify
the maximum nodes infected, a percentage was calculated
by taking the number of nodes active and dividing it by
the number of nodes in the largest connected component -
243,471. Since the rest of the connected components are of
45 nodes or less, we disregard these when calculating the
percent of active nodes.

To do this, an independent cascade model was used. Chen
et.al. explored the possibility of using the independent cas-
cade model with the purpose being that the diffusion events
of each arch in the graph were mutually independent [2].
This was important when running the propagation simulations
because if a node were to be infected by multiple edges, the
effect would be the same, resulting in a state of infection.
Such propagation occurs at each unit time ¢ and continues
until our experiment stops.

ITII. SIMULATIONS AND RESULTS

As stated previously, the goal of the study is to observe
the propagation within the network using multiple approaches
towards node selection. For the purpose, we evaluated three
key approaches using — 1) Random node, 2) Eigenvector
Centrality node, and 3) Betweenness Centrality node selec-
tion.

A. Single Propagation

First, we investigate single propagation. In the case of
Eigenvector and Betweenness centrality, a single node was
chosen from top 5 nodes in both algorithms for start of
propagation.

Figure 1 shows the effective spread of information to nodes
in the network when a random node is chosen as the seed.
With median scores of propagation aggregated across 100
simulations, we observe the spread of nodes starts at ¢ =
5 in most cases and expands exponentially with spreading
to maximum number of available nodes close to ¢ = 24.
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Fig. 1. Percentage of infected nodes within the graph at different time units
(t) with Random selection of single start node.

The graph also shows the variance in the observed result,
where the exponential growth has a large deviation from the
median (Ist and 2nd quartile box size) in certain simulations,
where the resulting spread is highly dependent on the network
characteristics of the random seed node.

It is important to note that, in our simulations, the maxi-
mum amount of nodes that could be infected was found to
be 170,772 out of the total 243,471 nodes in the largest
connected component of the network (a maximum prop-
agation coverage of about 70%). This is due to the fact
that those nodes with zero in-degree and positive out-degree
characteristics are considered a part of fully connected graph.
With zero in-degree, information cannot be propagated to
such nodes.

For comparison of random selection to eigenvector, and
betweenness centrality methods of node selection, top 5 nodes
from eigenvector and betweenness scores of the graph were
chosen as seed nodes. Each was simulated through the net-
work to observe median propagation rate (30 simulations con-
ducted per node) to study the effectiveness of the algorithms
to spread information through the network. Figure 2 compares
the propagation characteristics for each of the algorithms,
where both eigenvector and betweenness outperform random
node selection by a fair margin. Eigenvector and betweenness
are able to start exponential growth in their information
propagation much earlier than random selection.

Table I outlines the performance of each algorithm in
propagation metrics. Both eigenvector and betweenness
based node selection consistently outperform random node
selection, with 17.5 % of the nodes reached 0 < ¢t < 2,
whereas random has a larger variation at 0 < ¢ < 6.
Similarly, in the second quartile, 35% of the nodes are
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TABLE 1
COMPARISON OF PROPAGATION TIME (t)

Median Percent Random Eigenvector | Betweenness
infected (p) Time Time Time
0% <p<17.5 0<t<6 0<t<2 0<t<2

17.5% < p < 35 t="7 t=3 t=3
35% < p <525 t=38 4<t<5H t=14
525% <p<T70 | 9<t<24 | 6<¢t<20 | 5<t<20
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Fig. 2. Comparison of Random, Eigenvector, and Betweenness centrality
selection algorithms for median infected nodes at ¢.

reached by both centrality algorithms at ¢ = 3, whereas
random is only able to reach the threshold at ¢ = 7. For
52.5% of nodes, random takes double the time at ¢ 8
when compared to ¢t = 4 for centrality. There is also a large
variation in getting to the peak number of nodes at 70% with
random taking 9 < ¢ < 24, and eigenvector at 6 < ¢t < 20
and betweenness at 5 < ¢t < 20.

B. Double Propagation

The network was also evaluated for spreading of positive
and negative information through the network simultaneously.
In the simulation, the negative information gets a head start
at propagation with positive information following shortly
after at multiple time units ¢. This is to mimic real-world
situations where negative information starts and then positive
information or announcements react to those. Observations
were recorded for examination of time ¢ at which positive
information starts to spread among the nodes of the network
and the cross-point of positive versus negative where positive
information has no longer infected more nodes than the
negative information. The spread of the negative information
will still start at time ¢ = 0. The start node for the negative
information is always chosen randomly. The start node for



TABLE 1I
COMPARISON OF MAX START TIME ¢

Random Selection EigenVector Selection
Number of | Max Positive | Number of | Max Positive
Nodes Start Time Nodes Start Time
1 0 1 4
2 1 2 4
5 1 5 6
10 2 10 9

the positive information is chosen randomly, or by having a
good eigenvector centrality value.

The interactions of these two opposite information deserve
some discussions. Normally, people react to negative informa-
tion or opinion quickly and it takes time for them to change
their mind. The same can be said for positive information.
Therefore, while other more advanced interaction techniques
are possible, we focus on a simple method in which each
user gets one information and sticks with it even though the
opposite information may arrive later. We will discuss other
types of interactions as part of our future work in Section VI.

Figures 3 and 4 represent examples of the results from
running the positive and negative information propagation
simulations. Figure 3 consists of the simulations where the
positive start node was chosen randomly, while in Figure 4
the positive start node was chosen to be the node with the
highest eigenvector centrality. At first glance of these two
figures, it is clear that selecting the top eigenvector node
instead of choosing the node randomly, allows for a wider
window of time to respond. Similarly, simulations were ran
by choosing the positive start nodes by choosing 2 randomly,
5 randomly, 10 randomly, the top eigenvector node, the top
2 eigenvector nodes, the top 5 eigenvector nodes, and the
top 10 eigenvector nodes. For simplicity, the results of these
simulations are shown in Table II.

For each method of choosing the positive start node(s),
100 simulations were ran for each positive start time ¢ on
the x-axis of Figure 3, and ¢ ran from O to 50. For each 100
simulations at each point ¢ on the x-axis, the total number
of infected nodes for both positive and negative information
were calculated. The median value of each 100 simulations
was then taken and this is the value represented at each ¢.
The results shown in Table II. Figure 5 lets us take a look at
the trends of total positive infected nodes for each method of
choosing the start nodes. We can observe higher number of
infected nodes (throughout ¢) based on eigenvector centrality
in comparion to random node selection at each budget sizes.

Now, we want to take a deeper look into the results from
the double propagation simulations. Taking a look at columns
two and four in Table II, "Max positive start time”, we can
see the maximum time ¢ at which the positive information
can start to spread and still infect more nodes than negative
information infects. This column allows us make two very
important conclusions. First, we can say that the higher the
budget one has for picking their start set of nodes, the wider
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Fig. 3. Median infected nodes by positive and negative propagation at each
time ¢ with both start nodes randomly selected.
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Fig. 4. Median infected nodes by positive and negative propagation at each
time ¢ with positive start node based on highest eigenvector centrality value
(negative based on random).

the window they will have to start the spread of positive
information. When choosing the start nodes randomly, if one
only has a budget of 1 nodes, they must start the spread
of positive information exactly when the spread of negative
information starts. This time being ¢t = 0. But, if there is a
budget of 10 nodes, positive information can start spreading
when 0 < ¢ < 2. When choosing the start nodes based off
their eigenvector centrality, having a higher budget helps as
well. If the budget is one node, positive information can start
spreading when 0 < ¢ < 4. If the budget is ten nodes,
the positive information now has a higher window to start
spreading, 0 <t < 9.

The second conclusion we can make from this, is that
choosing the start nodes based off of their eigenvector cen-
trality, allows for a larger window as well. Looking at having
a budget of one node, choosing the node randomly basically
leaves no room for error. Choosing the node that has the
best eigenvector centrality allows for up to 4 extra ticks of ¢
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Fig. 5. Comparison of average infected nodes for each positive start time ¢
(from O to 10) with different selection criteria.

to discover the negative information, choose the start node,
and start the propagation of positive information through
the network. This continues when comparing methods for a
budget of two, five, and ten nodes. Choosing the nodes based
on eigenvector centrality gives an extra 3, 5, and 7 ticks of ¢
respectively.

IV. CONCLUSION

In this work, we have investigated information propagation
through the snapshot of a small subset of Twitter that was
constructed using a specific topic query. Our investigation
focused on the propagation of negative information and
counteracting with positive information that is expected to
be unleashed with a delay. We have studied the selection of
positive source nodes based on random selection, eigenvector
centrality, and betweenness. As expected, our simulation
results based on a so-called “one-off” infection mechanism
showed that random selection of positive source nodes has a
much slower infection or counteracting performance than the
selections based on eigenvector centrality and betweenness.
For example, when we give positive information a delay of
5 unit times, the selection of eigenvector centrality almost
doubles the number positive infections compared to that of
choosing positive source nodes randomly.

Our study, while interesting and indicative with strong re-
sults, leaves some future work directions. Different infection
mechanisms should be investigated (other than the “one-off”
method where nodes/users are infected by either negative
or positive information and never change their mind). Such
infection mechanisms can include change-of-mind based on
number of positive information received, latency between two
different information reaching the user, and others. Further-
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more, a more realistic propagation of information other than
“ticks” should be investigated as well.

REFERENCES
[1] S. Aslam, “Twitter by the numbers (2018): Stats, demographics
& fun facts,” accessed: 2018-04-25. [Online]. Available:

https://www.omnicoreagency.com/twitter-statistics/

W. Chen, L. V. Lakshmanan, and C. Castillo, “Information and in-
fluence propagation in social networks,” Synthesis Lectures on Data
Management, vol. 5, no. 4, pp. 1-177, 2013.

E. Sadikov and M. M. M. Martinez, “Information propagation on
twitter,” CS322 Project Report, 2009.

H. Kwak, C. Lee, H. Park, and S. Moon, “What is twitter, a social
network or a news media?” in Proceedings of the 19th international
conference on World wide web. ACM, 2010, pp. 591-600.

E. Bakshy, I. Rosenn, C. Marlow, and L. Adamic, “The role of
social networks in information diffusion,” in Proceedings of the 21st
international conference on World Wide Web. ACM, 2012, pp. 519—
528.

S. Ye and S. F. Wu, “Measuring message propagation and social
influence on twitter. com,” in International Conference on Social
Informatics.  Springer, 2010, pp. 216-231.

S. Vosoughi, D. Roy, and S. Aral, “The spread of true and false news
online,” Science, vol. 359, no. 6380, pp. 1146-1151, 2018.

D. Victor and M. Stevens, “United airlines passenger is dragged
from an overbooked flight,” accessed: 2018-04-25. [Online].
Available: https://www.nytimes.com/2017/04/10/business/united-flight-
passenger-dragged.html

D. Kempe, J. Kleinberg, and E. Tardos, “Maximizing the spread of
influence through a social network,” in Proceedings of the ninth ACM
SIGKDD international conference on Knowledge discovery and data
mining. ACM, 2003, pp. 137-146.

C. Budak, D. Agrawal, and A. El Abbadi, “Limiting the spread
of misinformation in social networks,” in Proceedings of the
20th International Conference on World Wide Web, WWW 2011,
Hyderabad, India, March 28 - April 1, 2011, 2011, pp. 665-674.
[Online]. Available: http://doi.acm.org/10.1145/1963405.1963499
Twitter, “Twitter public api documentation,” accessed: 2018-04-25.
[Online]. Available: https://developer.twitter.com/en/docs

[2]

[3]
(4]

[5]

[6]

[7]
[8]

[9]

[10]

[11]



