
An Efficient TCB for a Generic Data Dissemination
System

A. Velagapalli, S.D. Mohanty, M. Ramkumar
Department of Computer Science and Engineering

Mississippi State University, MS.

Abstract—Several applications fall under the broad umbrella
of data dissemination systems (DDS), where providers and
consumers of information rely on untrusted, or even unknown
middle-men to disseminate and acquire data. This paper proposes
a security architecture for a generic DDS by identifying a minimal
trusted computing base (TCB) for middle-men and leveraging
the TCB to provide useful assurances regarding the operation
of the DDS. A precise characterization of the TCB is provided
as a set of simple functions that can be executed even inside a
severely resource limited trustworthy boundary. A core feature
of the proposed approach is the ability of even resource limited
modules to maintain an index ordered merkle tree (IOMT).

Keywords-Merkle trees, Trusted Computing Base, Index Or-
dered Merkle Tree.

I. INTRODUCTION
The information age is characterized by the unprecedented

ability of entities to acquire and disseminate different types of
information over a wide range of channels, using a variety
of hand-held, lap-top, desk-top and rack-based computers.
A common characteristic of any data dissemination system
(DDS) is that the providers and consumers of data may not
be able to (or desire to) interact directly with each other, and
consequently, rely on middle-men.

Most often the middle-men are always-on-line servers that
store data from providers for access by consumers/clients.
More generally, from the perspective of the users (providers
and consumers) of the DDS, the middle-men also include a
plethora of other computers and components1 in the wide area
network infrastructure that enable clients to communicate with
servers. Irrespective of the specific nature and purpose of the
DDS, the users of the system are required to trust the middle-
men to not i) modify the data, ii) replay old data, or iii) deny
the presence of the data that actually exists.

A mechanism for securing the end-to-end link between the
client and a server platform can eliminate the need to trust
numerous other infrastructural components in the path between
the client and the server. However, users are still required
to trust the server. Trust in a server implies confidence in
the integrity of the server software, the platform on which
the server software is executed, personnel who may have
control over the platform, and that secrets employed by the
platform (for authenticating served data to consumers and
acknowledging receipt of data to providers) are well protected.

1Components necessary for the functioning of a wide area network like
the Internet include, for example, switches, bridges, intra and inter-domain
routers, DHCP servers, DNS servers, public key infrastructure, etc.

In practice, it is infeasible to rule out hidden mali-
cious/accidental functionality in any complex component. As
servers are typically composed of numerous complex hardware
and software components, there is very little rationale in
practice to simply trust middle-men. The contribution of this
paper is a security architecture for a generic DDS which
eliminates the need to trust middle-men.

A. Trusted Computing Base for a DDS
For any system with a desired set of assurances A, the

trusted computing base (TCB) [1] is a small amount of
hardware and/or software that need to be trusted in order
to realize the desired assurances A. Specifically, as long as
elements in the TCB are trusted, the desired assurances will
be met even if all other components in the system misbehave.
In general, the lower the complexity of the elements in the
TCB, the lower is the ability to hide malicious/accidental
functionality in the TCB components. Consequently, in the
design of any security solution it is necessary to lower the
complexity of components in the TCB to the extent feasible.

This paper proposes a comprehensive security solution for
a generic DDS consisting of a dynamic set of providers
disseminating dynamic data through an untrusted middle-man,
to a dynamic set of consumers. The paper identifies a simple
TCB for a generic DDS that can be leveraged to realize
all desired assurances regarding the operation of the DDS.
Specifically, the TCB is a set of simple functions F1() · · ·Fn()
executed inside the boundary of a trusted module T. Our
desire to simplify the TCB translates to a desire to limit the
computational and storage burden required for module T to
execute functions F1() · · ·Fn().

Central to the proposed solution is the capability of even
severely resource limited modules to maintain an index or-
dered merkle tree (IOMT). An IOMT is a simple extension of
the well known merkle hash tree [2] to provide the ability to
verify non-existence. The specific contribution of this paper
is a precise characterization of the TCB functionality as four
functions: i) Fuk(), used to issue symmetric secrets to the
users of the DDS (viz., providers and consumers of data); ii)
Fidl(), used to insert or delete leaves of an IOMT; iii) Fupd(),
used to update a record from a provider; and iv) Fqry() to
respond to a query by any user.

B. Organization
The rest of this paper is organized as follows. In Section II

we discuss the model for a generic DDS and enumerate the

desired assurances A. In Section II-A we discuss some of
the current efforts to provide some assurances regarding the
operation of an untrusted middle-man, which rely on the
use of authenticated data structures (ADS), and some of the
limitations of such approaches. In Section II-B we provide
a broad overview of the proposed approach where a trusted
module T serves as the TCB for the DDS. In Section III we
provide an algorithmic overview of the index ordered merkle
tree. Section IV provides an algorithmic description of the
TCB functions executed by the trusted module T. Conclusions
are offered in Section V.

II. A GENERIC DATA DISSEMINATION SYSTEM
We model a data dissemination system as being composed

of a dynamic set of users U and a look-up server L. Users
could be providers or consumers, or both. Any user may
provide a succinct record R = [o, l, v, τ] regarding an object
to a look-up server. The object is uniquely identified by the
owner o and a label l assigned by the owner, and is associated
with a value v and a duration of validity τ of the record.

The owner o of a record is permitted to remove or modify
the record at any time. Specifically, the owner may modify
the record even while the current record has not expired. Any
record may be queried by any user by specifying the owner
and label. The querier expects the response to contain the most
recent version of the queried record. More specifically, the
querier expects the same response as she would if she had
directly queried the owner o.

If the object itself is succinct (for example, an email address,
a public key, etc.), the object may also be stored by the look-
up server, and may be returned along with the response (in
this case the value v may be a cryptographic hash of the
email address or public key). More generally, the value v
provides some information regarding the object, and could
take several forms like the location of the object (a URL U),
the cryptographic hash of the object (which can permit the
client to verify the integrity of the object after it is obtained
from location U), information necessary to establish a private
channel with a data server at location U , etc.

The look-up servers simply do not care about the specific
nature of the object or the purpose of a specific query. One
query may be for the location v = U of a file l = F provided
by a provider o = P . To establish a secret with the server
U another query may be made for a record provided by o =
U . The object F fetched from U may include components
authenticated by another entity X . To verify the integrity of
such components the client may desire the public key of X .
This data may be disseminated through the same DDS by
another entity - for example, a certificate authority o = C. If
the CA C desires to revoke the public key of entity X , the CA
may simply instruct the look-up server to remove the record
indexed by o = C and l = X .

Some of the basic desired assurances regarding the opera-
tion of any DDS are as follows:

1) Records can be modified only by owners; specifically,
modifications to records by any entity other than the owner
will be detectable by consumers;

2) Servers should only respond with records corresponding
to the most recent update, and should not be able to replay
prematurely invalidated records;

3) Servers will not be able to hide the presence of records
that exist;

4) Servers will only provide a record if explicitly queried;
more specifically, servers should not need to reveal the exis-
tence of records that were not explicitly queried.

A. Related Work

Several researchers have addressed issues in reliably query-
ing an untrusted server using authenticated data structures
(ADS) [3] - [9]. In such scenarios, clients who query a server
trust only the originator/provider of the data (and not the
server). Specifically, even while the originator of the data is
not online, from a security perspective, ADS based schemes
strive to provide the same assurances possible in scenarios
where the queriers directly query the originator.

Broadly, an ADS can be defined by a construction algorithm
fc() and a verification algorithm fv(). The provider A of a set
of records DA computes a static summary d = fc(DA). The
records DA are hosted by an untrusted repository/server. Along
with a response R to a query by a client, the server is expected
to send a verification object (VO) ν satisfying d = fv(ν,R),
and the signature of the provider for the summary d. The client
is now convinced that the response R would be the same if
the client had directly queried A.

In ADS based approaches the owner A of the set of records
DA constructs a hash tree like data-structure with the records
as leaves and the succinct summary d as the root of the tree.
From this perspective, the ADS construction algorithm fc()
can be seen as the algorithm to insert a leaf into the tree, and
the VO can be seen as a set of hashes required to verify the
integrity of any leaf against the root d using the verification
algorithm fv(). Most commonly used hash tree data structures
for ADS applications include skip-lists, red-black trees and B-
trees, all of which provide the capability to order records in
a set (based on some index).

The purpose of ordering records is to permit succinct
responses to i) queries for non existing indexes, ii) max-
imum/minimum value queries and iii) range queries. For
example, if a querier seeks a record for an index X that does
not exist, a two adjacent records in the tree can be sent (along
with VOs to verify the two records against the root d signed
by the originator) - one for an index x and one for the next
index y such that x < X < y. As the tree is constructed by
the originator, to the extent the querier trusts the originator of
the data, the querier is assured that the queried index does not
exist. When queried for all records in a range X to Y the server
provides all records that fall in the range (each accompanied by
an independent VO), and in addition, to prove completeness (to
assure the querier that the server has not omitted any existing
record) the server provides two additional records - a record
for index x < X indicating X as the next record and a record
indicating that y > Y is the index that follows Y .

1) Limitations of Existing Approaches: Some limitations
of the ADS based approach render it unsuitable for several
practical services with any of the following characteristics:

a) Multiple Independent Providers: In scenarios with mul-
tiple independent providers a record for an index X may be
provided by and entity A and the record with the next higher
index Y may be provided by an independent entity B. Clearly,
neither A nor B can construct the hash tree.

b) Truly dynamic data: In most ADS based applications it is
assumed that whenever any record is modified, the new root is
signed by the originator and issued to the server. In scenarios
where future modifications are unforeseen, the originator needs
to sign the roots with short enough validity durations to ensure
that the old root cannot be replayed by the server. Thus, the
originator needs to send fresh signatures for the current root
periodically, even if no updates were performed. In scenarios
where the originator desires to be involved only for purposes
of providing updates, existing ADS schemes are unsuitable.

c) Revealing unsolicited information: In many application
scenarios it is desirable that servers should not be required to
provide unsolicited information to queriers. As an example, in
the case of the domain name system (DNS) [10], [11], to prove
that no record with the queried DNS name exists, a DNS server
is required to provide two name names that cover the queried
name, thus revealing unsolicited information. This is the cause
of the well known “DNS walk” or “zone enumeration” issue
associated DNSSEC [12],[13].

d) Low bandwidth overhead is desired: In some scenarios,
the overhead for the verification object (usually a sequence of
hashes) required by clients for verifying any record may be
unacceptable.

e) Entrusting secrets to servers: In some application scenar-
ios the data to be conveyed to the client may be a secret. While
ADSs can ensure integrity of data stored at untrusted servers,
they do not address issues related to privacy of the data.
Thus, in scenarios where middle-men need to be entrusted
with secrets, conventional ADS schemes cannot be used.
B. Salient Features of the Proposed Approach

All the above inadequacies can be overcome if ADSs
are constructed and verified by a trusted third party (TTP).
Specifically, as typical ADS construction and verification algo-
rithms involve only simple sequences of cryptographic hashing
and logical operations, the TTP can be a low complexity
trustworthy module T. As the intent of the TTP is to ensure
that middle-man cannot violate rules, module T functionality
for constructing/verifying ADSs is the TCB for a middle-man.

In the proposed security model, the look-up servers are
untrusted. However, a look up server has access to a trusted
module T which performs some trivial functions f1() · · · fn()
that constitute the TCB for the system. While a look-up server
may be required to maintain and serve a dynamic number (say
n) of records where n could be millions or even billions, the
module T is assumed to possess only modest computational
ability and small constant O(1) storage capability.

Records submitted by providers are stored as leaves of an
index ordered merkle tree (IOMT), uniquely indexed as a

function of the owner o and a label l (more specifically, h(o, l),
where h() is a standard cryptographic hash function like SHA-
1). The module stores only the root of the IOMT (a single
hash). By performing simple sequences of hash operations,
the module can verify the integrity of any record against the
root of the tree.

In the proposed approach, a query from any user (a con-
sumer) specifies the owner o and label l. The querier expects
a response that is cryptographically authenticated by module
T. Similarly, requests for updates by users (providers) are
authenticated by providers for verification by the module.
On submitting an update request the providers expected an
authenticated acknowledgement from the module. On receipt
of a response authenticated by the module, to the extent that
the users trust the module, they are assured that all four
assurances are met.

1) Index Ordered Merkle Tree: The main difference be-
tween the well known merkle tree and the IOMT is that in the
latter (as the name suggests) the leaves are ordered by some
index. Apart from their utility in providing provable responses
to a wide variety of queries, as we shall see in the next section,
ordering of leaves is also necessary to thwart some replay
attacks.

While merkle hash trees have received wide attention in
the field of trustworthy computing, most ADS based do
not employ the merkle hash tree due to some of the well
recognized limitations of the binary merkle tree related to
i) issues in inserting/deleting nodes and ii) inefficiencies in
situations where the total number of leaves is not a power of
2. Consequently, most ADS based approaches have preferred
the use of more complex tree structures. However, a simple
extension to merkle trees - the IOMT - addresses such limita-
tions of the plain merkle tree.

2) Query-Response Authentication: Modules have to verify
authentication appended by providers for every update, and
sign every response for verification by the querier. Obviously,
for servers that may have to handle large volumes of queries
and updates, the cost of authentication will be a significant
bottle-neck - especially if asymmetric primitives are employed.

To amortize the overhead for authentication, asymmetric
primitives are used only for setting up symmetric keys between
the module and the users (providers and consumers). Message
authentication codes (MAC) based on such symmetric keys
are then used for authentication of exchanges between users
and the module.

3) Opportunistic Shared Secrets Between Users: Often, a
query is to locate some service/entity S with whom the querier
Q expects to interacts soon after the query, and would thus
desire a mechanism to secure the interaction. It is beneficial
to use the trusted module to also opportunistically provide
additional information required for the Q and S and to
establish a secret KQS . To cater for resource limited portable
devices, it is desirable that mechanisms for establishing the
shared secret be limited to symmetric primitives.

In the proposed approach, the shared secret established
between the module and the users are also leveraged to

l0 l1 l2 l3 l4 l5 l6 l7 l8 l9 la lb lc ld le lf

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 va vb vc vd ve vf

v01 v23 v45 v67 v89 vab vcd vef

v03 v47 v8b vcf

v07 v8f

r

Fig. 1. A Binary Merkle tree with 16 leaves. The complementary nodes for
l6 are v7, v45, v03 and v8f .

opportunistically establish shared secrets between users. Any
user (say provider S) can submit a record to the look-up
server to request the trusted module to serve as a mediator.
In response to a query from some user Q for such a record
from S, the querier will receive a non secret value pQS that
can be used to compute a symmetric secret KQS . Both Q
and S will need to perform only a single hash operation to
compute the common secret KQS .

4) Potential Applications: While almost any Inter-
net/Intranet based service can be seen as falling under the
category of a DDS, some specific examples are as follows:

1) Dissemination of dynamic DNS records by zone author-
ities. Response to negative queries will not reveal records that
exist, and thus overcomes the DNS-walk issue that plagues the
current DNSSEC [11] approach to secure DNS. In addition,
unlike DNSSEC, the proposed approach can also be used to
provide assurances for dynamic DNS (where DNS records
may expire prematurely). Furthermore, server platforms may
also convey records to facilitate any client (who performs a
DNS look-up for the server) to opportunistically establish a
shared secret with the server, which could be used as an IPSec
security association.

2) Mobile servers with highly dynamic addresses could
disseminate their reach-ability information (and enable clients
to establish a secure channel with such servers);

3) Dissemination of dynamic revocation lists by certificate
authorities, without the bandwidth overhead associated with
certificate revocation lists (CRL).

4) Publication of dynamic quotes by any “exchange”;
5) Dissemination of encryption secrets for Email messages;

a user desiring to send an encrypted Email to some address will
merely make a query to a look-up server to obtain a symmetric
secret for encrypting the message.

III. INDEX ORDERED MERKLE TREE
A binary merkle hash tree is a data structure constructed

using a cryptographic hash function h() (for example, SHA-
1). A tree of height L has N = 2L leaves. Figure 1 displays a
merkle tree with N = 16 leaves l0 · · · lf (with height L = 4).
The N leaf-nodes are obtained as v0 = h(l0) · · · vf = h(lf).
Two adjacent nodes in each level (a left node vl and a right

node vr) are hashed together to yield the parent node h(vl, vr)
one level above. The lone node at the top of the tree is the
root r of the tree, and is a commitment to all leaves.

Corresponding to a leaf node vi is a set of L complementary
nodes vi (consisting of one node in each level) such that r =
f(vi,vi) where f() represents a sequence of hash operations.
As long as the hash function h() is pre-image resistant, it is
infeasible to determine alternate values l̃i 6= li, and ṽi 6= vi

that will satisfy f(vi, ṽi) = r.
In practical applications each leaf is a record of some large

dynamic database. A trusted module capable of executing f()
stores only the root of the tree. The leaves and all other internal
nodes can be stored by an untrusted entity U. To modify a leaf
li to l′i the old leaf li, complementary nodes vi and the new
leaf l′i (duly authenticated by the entity authorized to modify
the leaf) are provided as inputs to the module. The module
verifies that r = f(h(li),vi) and computes the new root as
r′ := f(h(l′i),vi). Once the root has been modified to replace
leaf li with l′i, the old leaf li cannot be demonstrated to be a
part of the tree as it is infeasible to determine values v′ such
that the old leaf is consistent with the current root.

A. Merkle Tree Limitations
Two well known limitations of the merkle hash tree are i)

the power of two requirements for the total number of leaves;
and ii) the ability to readily recognize non existence of a
record. The implication of the first limitation is inefficiency in
scenarios where the total number of leaves N is not a power
of 2. Specifically, if 513 records need to be stored, then a tree
of length 1024 need to be maintained.

The second limitation is however more serious. For the
module (which maintains only the root) to be convinced that
no record regarding some index a exists, the module should
verify the integrity of every leaf and in this process, deduce
that no leaf for a exists. Obviously, this is far from practical.
That the module can not verify non existence can be abused
to perform replay attacks.

As a specific example, consider a scenario where some new
information is available regarding a record for some index
a (and thus needs to be updated). However, the untrusted
server (which stores all records) can incorrectly claim that
no information exists currently for a, and request the new
information for a to be added as a new record. After this, as
both the old and new records are part of the tree, the server
has the ability to advertise either record.

B. Index Ordered Merkle Tree
The index ordered merkle tree is a simple modification to

the merkle tree which addresses both limitations of the merkle
tree. In an IOMT a leaf Li (the ithleaf in the IOMT) associated
with data index a is of the form Li = (a, va, a

′) where the
middle value va is the data associated with index a, and a′ is
the next data-index.

That a leaf Li = (a, va, a
′) can be verified by the module to

be consistent with the root implies that i) a leaf exists for index
a, and ii) no leaf exists for any index that falls between a and
a′. The set of uniquely indexed current leaves is an ordered

list where every index points to the next higher index; the
exception is the highest index (address) which wraps around
and points to the least index.

A value x is covered by (a, a′) if (a < x < a′), or (for the
wrapped around pair) if (x < a′ ≤ a) or (a′ ≤ a < x). If
a = a′ all values except a are covered, and implies that a is
the only index.

The issues associated with the power of 2 requirement is
addressed by simple modifications to hash functions HL()
used for deriving a leaf node from an IOMT leaf and HV ()
used for combining two nodes to obtain a parent node. In an
IOMT empty leaf is of the form Li = (0, 0, 0). The function
vi = HL(Li) which maps a leaf to a leaf node is defined as

vi = HL(i, vi, i) =

{
h(i, vi, i

′) if i 6= 0
0 if i = 0

(1)

The function HV (u, v) which maps two internal nodes to a
common parent is defined as

p = HV (u, v) =

 u if v = 0
v if u = 0
h(u, v) if u 6= 0, v 6= 0

(2)

Consequently, an IOMT with a root 0 can be seen as a tree
with any number of zero leaves of the form (0, 0, 0).

By performing some simple checks the IOMT ensures that
only one leaf can exist for an index. Specifically, a leaf with
an index c can be inserted only if can be demonstrated that
no leaf with index c exists currently by providing a leaf that
covers c. Specifically, to insert a leaf for an index c two leaves
need to be provided: i) an empty leaf (0, 0, 0) and ii) a leaf for
some other index a - say (a, va, a

′) such that (a, a′) covers c.
After insertion the two leaves will be modified to (c, vc, a

′) and
(a, va, c) respectively. To insert a leaf with index a when the
root is zero, the root is simply set to HL(a, va, a). Similarly,
when a leaf (x, vx, x

′) needs to be deleted a leaf (b, vb, b
′)

should be provided such that x′ = b. After deletion the first
leaf becomes (0, 0, 0) and the second becomes (b, vb, x

′). To
delete a sole leaf (a, va, a) the current root HL(a, va, a) is set
to 0.

Except for the case of insertion of the first leaf or deletion
of a sole leaf, to insert or delete a leaf two leaves will need
to be modified simultaneously. Two leaf hashes vl and vr can
be simultaneously mapped to the root r by mapping the leaf
hashes to the common parent, and then mapping the common
parent to the root. Let vp be lowest common parent of two leaf
nodes vl and vr. More specifically, let vp = HV (v

l
p, v

r
p) where

vlp and vrp are the left and right child of vp. Let vl, vr and vp

be a set of hashes satisfying vlp = f(vl,vl), vrp = f(vr,vr),
and r = f(vp,vp). Thus,

r = f(HV (f(vl,vl), f(vr,vr)),vp) (3)

IV. A SIMPLE TCB FOR A DDS
In the proposed security architecture look up servers (LU)

are associated with a module T with modest capabilities.
Specifically, module T has the following limited abilities:

1) Generate an asymmetric key pair (R,U); the public key
U doubles as the identity of the module;

2) Generate a random secret S; this secret will be used for
generating symmetric secrets conveyed to users of the system
(for authentication/verification of queries/responses);

3) Perform asymmetric encryption and decryption X ′ =
fenc(Uo, X) (encryption of a value X using a public key Uo)
and decryption P = fdec(C) using private secret R; such
operations will be used infrequently - for conveying (secrets
derived from S) to users.

4) perform simple sequences of logical and hash operations.
5) possess constant small memory for storing secrets S,R,

IOMT root ξ, and temporary storage of inputs, outputs, and
intermediate values.

6) possess a clock, which is however not synchronized with
any external clock; the frequency of the clock is assumed to
be fixed, and known to all users of the system.

Trust in the module implies that the secrets R and S
are known only to the module with identity U (the public
key of the module) and that one or more trustworthy enti-
ties/organizations have certified that the immutable function-
ality of the module has been verified (by certifying the public
key).

A. TCB Functions
The module T exposes four functions Fuk(), Fidl(), Fupd(),

and Fqry to the look-up server housing the module. In general
inputs to the functions include values sent by a user to the
look up server, and values stored by the server that are
demonstrably consistent with the IOMT root stored inside the
module. The outputs of the module include values like current
time (according to the module), a message authentication code
(MAC) for verification by a user encrypted secrets that can be
decrypted by the user.

1) Conveying User Secret: Interface Fuk() is employed to
securely convey a secret Ko to a user with public key Uo (who
is assigned an identity o = h(Uo)). The secret Ko may be used
by the user to send authenticated update requests regarding
objects owned by the user or send authenticated queries for
objects provided by any user.

User : Generate Key pair (Ro, Uo)
User : Choose random challenge c, Compute C = Fenc(U, c)
User→ LU : Uo, C, (τ),
LU→ T : Fuk(Uo, C, τ)
T : o := h(Uo); tek = t+ τ ;Ko = h(S, o, tek);
T : Kc

o := fdec(C)⊕Ko;
T→ LU : t, C′ = fenc(Uo,Kc

o), µ = h(t, C′, τ,Ko)
LU→ User : t, C′, µ, (τ)
User : Ko = fdec(Ro, C′)⊕ c; Verify µ = h(t, C′, τ,Ko)
User : tek = t+ τ

Any user can generate a key pair (Ro, Uo) (using the specific
asymmetric scheme supported by the module) and send a
challenge to the module T, encrypted using the module’s
public key, along with the user’s public key Uo. The user or
the server can specify the validity duration τ for the MAC
key Ko issued to the user. The key Ko can be used by the
user for computing MACs to authenticate update requests or

queries sent by user till time tek = t + τ (time according to
the module).

2) Inserting and Deleting IOMT leaves: The module main-
tains the root of an IOMT with any number of leaves of
the form (a, va, a

′). It is the responsibility of the server
to store the leaves and intermediate hashes. The module
considers a leaf as valid only if provided a set of hashes va

satisfying f(la,va) = ξ where the leaf hash is computed as
la = HL(a, va, a

′).
If va 6= 0, the leaf is interpreted as a record provided

by owner o with label l such that a = h(o, l), and va =
h(v, te, to), where v is a value associated with the record, te
is the expiry time of the record, and to ∈ {0, tek} (to can be
zero, or the expiry time tek of the key Ko of the owner o).
If to 6= 0 the module interprets this as a request to enable
a private channel between any querier of the record and the
owner o.

If va = 0 (if the middle value in the leaf is zero) the leaf is
a “place-holder” and implies that no information is available
regarding index a. The server can request insertion of any
place holder (if no leaf or place holder currently exists for the
index to be inserted) or delete any place holder. TMM function
Fidl() verifies the simple conditions that need to be satisfied
for a place-holder to be deleted, and can be used to delete
or insert a place-holder can be described algorithmically as
shown below.

LU→ T : (l, vl, l
′), (r, vr, r′), i,vl,vr,vp

T→ LU : ξ = Fidl((l, vl, l
′), (r, vr, r′), i,vl,vr,vp){

IF (l = 0) ∧ (r = 0) RETURN; //At least one leaf should be non zero
IF (l = 0) ∨ (r = 0)//If one leaf is zero it is the only leaf
ξ1 := HL(i, 0, i); ξ2 := 0; //i is the sole index

ELSE
IF (l = i)//(l, vl = 0, l′)→ (0, 0, 0)

IF (vl 6= 0) ∨ (r′ 6= i) RETURN; //Prereqs not satisfied
l′l := 0; l′r = HL(r, vr, l

′);
ELSE IF (r = i)//(r, vr = 0, r′)→ (0, 0, 0)

IF (vr 6= 0) ∨ (l′ 6= i) RETURN; //Prereqs not satisfied
l′r = 0; l′l := HL(l, vl, r

′);
ELSE RETURN;
ll := HL(l, vl, l

′); lr := HL(r, vr, v
′);

ξ1 = f(HV (f(ll,vl), f(lr,vr)),vp); //Root before deletion
ξ2 = f(HV (f(l′l,vl), f(l

′
r,vr)),vp); ; //Root after deletion

IF (ξ = ξ1) ξ := ξ2; // delete index i
IF (ξ = ξ2) ξ := ξ1; //insert index i
RETURN ξ;
}

To delete a place holder the LU server provides two current
leaves - a place-holder (i, 0, i) corresponding to the index i to
be deleted, and a leaf (j, vj , j′ = i) which points to the place-
holder to be deleted. An exception is for deletion of a sole leaf
(i, 0, i′ = i)) in the tree (in which case the root ξ = HL(i, 0, i)
should be set to 0).

To compute the root from two leaves three sets of com-
plementary hashes are provided to the module. The module
computes the roots ξ1 and ξ2 - the roots before and after
deletion respectively. If the current root ξ is either ξ1 or ξ2
it is reset to ξ2 or ξ1 respectively. Specifically, if the current
root is ξ1, and if the leaves provided satisfy the condition for
deleting index i, by setting the root to ξ2 a leaf with index i is

deleted. On the other hand, for the same inputs, if the current
root is ξ2 then by setting the root to ξ1 a leaf corresponding
to index i is inserted.

3) Updating Records: Typically, to provide a record or up-
date a record the owner needs to send the values corresponding
to the new record authenticated using a MAC µ. An exception
for updating a stored record is when the stored record has
expired, in which case the server can request the module to
convert the record to a place holder (which can then be deleted
if required using Fidl()).

A request for update from user o for a record with label
l, includes a value v′, a period of validity τ , and a flag f , a
nonce n, and a MAC computed over values o, l, v, τ, f, n and
secret Ko. After completion of the update the user expects an
acknowledgement authenticated by the module.

To enable the module to compute Ko = h(S, o, tek) the
inputs include the time of expiry tek of the key Ko. If no leaf
exists for index a = h(o, l) a place holder is inserted by the
server using Fidl(). If the current leaf is a place holder (as
will be the case when the record is provided for the first time)
this fact is indicated to the module by setting te = 0. In the
updated record the value v is set as requested to v′. The expiry
time te of the record is set as te = t+ τ . If the flag f is set
in the request the value to is set to be the same as the time of
expiry tek of the key Ko of the owner. If f = 0 the value to
is set to 0 instead.

User→ LU : o, l, v′, n, τ, f, tek, µ = h(v′, l, τ, f, n,Ko)
LU : If no leaf with index a = h(o, l) insert index a using Fidl()
LU : If leaf for index a is a place holder, set te = 0;
LU : If no request from user µ = 0; t > te
LU→ T : (o, l, v, te, to, a′,v, µ, tek, n, v

′, τ, f)
T→ LU : Fupd(o, l, v, te, to, a

′,v, µ, tek, n, v
′, τ, f){

a := h(o, l); va := (te = 0) ? 0 : h(v, te, to);
IF (ξ 6= f(Hl(a, va, a

′),v)) RETURN;
IF (µ = 0) ∧ (t > te)//Expired record

RETURN ξ := f(Hl(a, 0, a
′),v);

IF (t > tek) RETURN; //Expired user key
Ko := h(S, o, tek); t

′
e = t+ τ ;

IF (µ 6= h(v′, l, τ, f ′, n,Ko)) RETURN;
t′o := (f = 1)? tek : 0;
v′a := h(v′, t′e, t

′
o); ξ := f(Hl(a, v

′
a, a

′),v);
RETURN ξ, t, µ′ := h(a, v′, t′e, f, n,Ko);
}
LU→ User (only on successful execution of Fupd()): µ′, t
User : t′e = t+ τ ; a = h(o, l);Check µ = h(a, v′, t′e, f, n,Ko);

Only if Fupd() executes successfully will the server receive
a MAC µ′ that can be conveyed to the user.

4) Querying Records: A user q may send a query for an
object by specifying the owner o and label l and a nonce. No
information may exist regarding the queried index a due to
one of the following reasons

1) no leaf with index a exists; or
2) the leaf with index a is a mere place holder; or
3) the record has expired;

As any such reason can be verified by the module, the module
can send an acknowledgement to the effect that no data is
available. On the other hand, if the queried index exists, the
module prepares an authenticated response which conveys the

value v, and the remaining duration of validity (which is te−t).
In addition, if the value to is not zero the module includes
an additional value pqo in the response which will enable q
to compute a shared secret with the owner o of the queried
record.

Specifically, if tek > t and to > t (both are current) the
module computes Kq = h(S, q, tek), Ko = h(S, o, to), and

pqo = h(Kq, o, to)⊕ h(Ko, q, tek). (4)

Using secret Kq the user q can compute Kqo = h(Kq, o, to)⊕
pqo = h(Ko, q, tek) which can be readily computed by o using
its secret Ko. Thus, both q and o can compute a secret by
performing a single hash. The query response process can be
algorithmically described as follows:

User q → LU : aq , n, µ = h(aq , n,Kq);
LU : either a = aq or a covers aq
LU : If leaf for index a is a place holder, set te = 0;
LU→ T : (a, o, l, v, te, to, a′,v, q, µ, tek, n)
T→ LU : Fqry(a, o, l, v, te, to, a′,v, q, µ, tek, n){
IF (t > tek)RETURN ; //Expired user key
Kq := h(S, oq , tek); aq := h(o, l); pqo := 0;
IF (µ 6= h(aq , n,Kq) RETURN;
va := (v = 0) ? 0 : h(v, te, to);
IF (ξ 6= f(Hl(a, va, a

′),v)) RETURN;
IF (te < t) RETURN;
IF (a = aq) ∧ (va 6= 0) ∧ (t < te)//Unexpired Queried Record

IF (to > t)//Compute pairwise public value
Ko := h(S, o, to); pqo = h(Ko, h(q, tek))⊕ h(Kq , h(o, to));

µ′ = h(a, v, te − t, pqo, to, n,Kq);
ELSE IF (a = aq) ∨ ((a < aq < a′) ∨ (aq < a′ < a) ∨ (a′ < a < aq))
µ′ = h(aq , 0, 0, 0, 0, n, c); //Expired Record or Record NA

ELSE RETURN; //incorrect proof of non existence by server
RETURN ξ, t, µ′, pqo;
}
LU→ User (only on successful execution of Fqry()): t, µ′, pqo, v, te, to;
User : if v = 0 Verify µ′ = h(aq , 0, 0, 0, 0, n,Kq)
User : if v 6= 0 Verify µ′ = h(aq , v, te − t, pqo, to,Kq)
User : if to > 0 compute Kqo = h(Kq , h(o, to))⊕ pqo

V. DISCUSSIONS AND CONCLUSIONS

A simple trusted module with fixed functionality defined
by functions Fuk(), Fidl(), Fupd() and Fqry() can be utilized
to assure the operation of any look-up server, and thereby
secure a wide range of applications under the DDS model.
Specifically, the server maintains all records and internal nodes
of the IOMT, and is forced to ensure that the values stored by
the server remains consistent at all times with the root stored
inside the module. Any record that cannot be demonstrated
to be consistent cannot be updated, or conveyed to users.
Specifically, only if the updates are applied in a consistent
manner can the server send an authenticated acknowledgement
to the user requesting the update; only if a record is consistent
with the root can the server send the record to the querier
(along with a MAC generated by the module).

In the proposed approach asymmetric cryptographic primi-
tives are used sparingly - only for establishing shared secrets
between users and the module. Unlike conventional ADS
systems where for verification of any record the client requires
a verification object in the form of a set of log2 n hashes
(where n is the total number of records stored by the server),

in the proposed approach the VO is provided by the middle-
men to the module, and only a single MAC is sent to the user
to attest the accompanying record.

No component of the server, the user in control of the server,
or the numerous components necessary for the functioning
of any wide area network, need to be relied upon to realize
the desired assurances. As long as the cryptographic hash
function h() is pre-image resistant, and the functions executed
by the module cannot be modified, and the secrets protected
by module cannot be exposed, all desired assurances are
guaranteed.

Our motivation to reduce the complexity of operation
performed by the module T is to improve the trustworthi-
ness of the module. The simpler the functionality of the
module, the better is the ability to verify the integrity of
such functionality. Furthermore, due to generic nature (fixed
functionality irrespective of the type of the look-up service)
such modules can be easily mass produced; the process for
verifying and certifying fixed functionality modules can also
be easily automated.

ACKNOWLEDGEMENT

This research was partly funded by the Department of
Homeland Security (DHS)-sponsored Southeast Region Re-
search Initiative (SERRI) at the Department of Energy’s Oak
Ridge National Laboratory.

REFERENCES

[1] B. Lampson, M. Abadi, M. Burrows, E. Wobber, “Authentication in Dis-
tributed Systems: Theory and Practice,” ACM Transactions on Computer
Systems, 1992.

[2] R.C. Merkle “Protocols for Public Key Cryptosystems,” In Proceedings
of the 1980 IEEE Symposium on Security and Privacy, 1980.

[3] P. Devanbu, M. Gertz, C. Martel, S. Stubblebine, “Authentic third-
party data publication,” In Fourteenth IFIP 11.3 Conference on Database
Security, 2000.

[4] A. Buldas, P. Laud, and H. Lipmaa, “Accountable certificate manage-
ment using undeniable attestations,” In ACM Conference on Computer
and Communications Security, pages 918. ACM Press, 2000.

[5] A. Anagnostopoulos, M. T. Goodrich, R. Tamassia, “Persistent authenti-
cated dictionaries and their applications,” In Proc. Information Security
Conference (ISC 2001), volume 2200 of LNCS, pages 379393. Springer-
Verlag, 2001.

[6] C. Martel, G. Nuckolls, P. Devanbu, M. Gertz, A. Kwong, S. Stub-
blebine, “A general model for authentic data publication,” VC Davis
Department of Computer Science Technical Report, 2001.

[7] P. Devanbu, M. Gertz, A. Kwong, C. Martel, G. Nuckolls, S. Stub-
blebine, “Flexible authentication of XML documents,” In Proc. ACM
Conference on Computer and Communications Security, 2001.

[8] M. T. Goodrich, R. Tamassia, A. Schwerin, “Implementation of an
authenti- cated dictionary with skip lists and commutative hashing,” In
Proc. 2001 DARPA Information Survivability Conference and Exposi-
tion, volume 2, pages 6882, 2001.

[9] M. T. Goodrich, R. Tamassia, N. Triandopoulos, R. Cohen, “Authen-
ticated data structures for graph and geometric searching,” In Proc.
RSA Conference Cryptographer’s Track, pages 295313. Springer, LNCS
2612, 2003.

[10] RFC 1034, Domain Names - Concepts and Facilities.
[11] R. Arends, R. Austein, M. Larson, D. Massey, S. Rose “RFC 4033:

DNS Security: Introduction and Requirements,” March 2005.
[12] S. Weiler, J. Ihren, “RFC 4470: Minimally Covering NSEC Records and

DNSSEC On-line Signing,” April 2006.
[13] B. Laurie, G. Sisson, R. Arends, Nominet, D. Blacka, “DNS Security

(DNSSEC) Hashed Authenticated Denial of Existence,” RFC 5155,
March 2008.

