
An Efficient TCB for a Generic Content Distribution System

S.D. Mohanty, A. Velagapalli, M. Ramkumar
Department of Computer Science and Engineering

Mississippi State University, MS.

Abstract—We consider the security requirements for a broad
class of content distribution systems where the content distribu-
tion infrastructure is required to strictly abide by access control
policies prescribed by owners of content. We propose a security
solution that identifies a minimal trusted computing base (TCB)
for a content distribution infrastructure, and leverages the TCB
to provide all desired assurances regarding the operation of
the infrastructure. It is assumed that the contents and access
control policies associated with contents are dynamic.

I. INTRODUCTION

A content distribution system includes publishers who
create content for consumption by subscribers, and a third
party in the form of a distribution infrastructure, as pub-
lishers themselves may not possess the infrastructural capa-
bilities required to distribute content. In any such content
distribution system (CDS), publishers desire mechanisms to
ensure that their content is made available only to a select set
of subscribers, by prescribing an access control list (ACL)
for the content. Subscribers desire mechanisms to ensure the
integrity and authenticity of the content.

Irrespective of the nature of the specifics of the CDS,
the users of the system - viz., publishers and subscribers -
are expected to trust the infrastructural elements to preserve
integrity of content, and adhere to the (content specific) ACL
prescribed by the publisher. In practice, the “infrastructure”
may be composed of possibly several agencies, computers
and personnel. As malicious behavior by any infrastructural
component may lead to violation of the desired assurances,
and as it is impractical to rule out such behavior in complex
systems, explicit mechanisms are required to assure the
operation of such infrastructural elements.

A. Trusted Computing Base
The trusted computing base (TCB) [1] for a system is

a small amount of hardware and/or software that need
to be trusted in order to realize the desired assurances.
More specifically, the assurances are guaranteed even if all
elements outside the TCB misbehave.

The lower the complexity of the elements in the TCB, the
lower is the ability to hide malicious/accidental functionality
in the TCB components. Consequently, in the design of any
security solution it is necessary to lower the complexity of
components in the TCB to the extent feasible. The contribu-
tion of this paper is a broad security solution for assuring
the operation of a content distribution system (CDS), and

is motivated by the question “what is a minimal TCB for a
CDS?”

In the proposed approach the TCB is a set of simple
functions F() executed inside a trusted boundary - for
example, by a trusted module T. All desired assurances
regarding operation of the CDS are guaranteed as long as
the following (very reasonable) assumptions hold:

1) a pre-image resistant cryptographic hash function h()
exists.

2) the module T is read-proof and write-proof; in other
words, the secrets protected by the module cannot
be exposed, and the simple functionality F() of the
module cannot be modified;

A multitude of proven hash functions (like SHA-1) ex-
ist that justify the first assumption. To justify the second
assumption it is essential that the functionality F() is
constrained to be simple enough to permit consummate
verification. Towards this end we deliberately limit the
computational and storage capabilities of module T required
to execute F() - by constraining F() to be composed of
simple sequences of logical and cryptographic hash h()
operations.

The contribution of this paper is an algorithmic descrip-
tion of a TCB functionality F() which can be leveraged to
assure the operation of a broad class of content distribution
systems.

The rest of this paper is organized as follows. In Section II
we outline a generic model for a CDS and enumerate
the desirable features and assurances. In Section III we
provide a systemic overview of the proposed approach. In
Section III-B we provide an overview of a simple data
structure, an index ordered merkle tree (IOMT) which is
used to succinctly represent all content handled by the
CDS and the ACL for each content. Section IV provides
a description of the operation of the system along with an
algorithmic description of the TCB functionality F().
II. A MODEL FOR A GENERIC CONTENT DISTRIBUTION

SYSTEM
A content distribution system consists of a dynamic set

of users U = {u1 · · ·un} (who may be publishers, or
subscribers, or both) and a dynamic set of content C =
{c1 · · · cm}, where ui is a unique identity of a user, and
ci is a unique label assigned to a content. Both sets U and C
may be dynamic, and posses practically unlimited cardinality
(unlimited n and m).



Associated with a content with label cj are
1) a user of the system ui identified as the publisher/owner

of the content;
2) a content encryption secret sj ,
3) an access control list Aj (created by the owner), and;
4) a cryptographic hash γj of the encrypted content.
As long as a mechanism exists to securely deliver the

content hash γj to a user, irrespective of the channel over
which the actual content is delivered, the user receiving
content cj can verify the integrity of the content. For
example, such encrypted content could be made available for
download from a public repository or even distributed across
several peer-to-peer clients. However, to gain clear access to
the content, a user u requires the content encryption secret
sj . Only privileged users specified in the access control list
(ACL) should be able to do so.

More generally, the ACL could assign various levels of
privileges; for example, some users may be allowed only to
access the content (more specifically, to receive secret sj);
some users with a higher privilege may be allowed to modify
the content; some users with an even higher privilege may
even be allowed to modify the ACL (in other words, the
ACL may also be dynamic).

The infrastructural elements I in a CDS include mech-
anisms required to physically host content and the ACL
associated with the content, accept requests from users, and
deliver encrypted content and content decryption keys to
privileged users.

A. Desired Assurances

Ideally, publishers should need to interact with the CDS
infrastructure I only for uploading their content, or for
modifying the ACL. Some of the specific desired assurances
regarding the operation of the CDS are as follows:

1) I will not alter the content; more specifically, I will
ensure that only users explicitly granted the permission
(by the owner) to modify the content can do so.

2) I will not reveal content encryption secrets to unau-
thorized parties;

3) I will not modify the ACL; more specifically, I will
ensure that only users explicitly granted the permission
(by the owner) to modify the ACL can do so.

4) a user u authorized (as per the most recent ACL)
to receive content will receive only most up-to-date
version of the content;

5) when a user u requires access to content cj , and if u
is authorized access to the content, I will not refuse
to provide access to the content.

6) when a user u requests access to content cj , and if the
content cj does not exist, the user will learn nothing
about the existence of other contents that have not
been explicitly queried by the user; similarly, if u
is not authorized access to the content, the user will

learn nothing about other users who have access to the
content.

Broadly, the first assurance is towards authentication and
integrity of content. The second and third assurances are
necessary to guarantee privacy of the content as intended
by the creator. The fourth assurance addresses replay attacks
- after a content has been modified, the older version may
not be replayed by the CDS infrastructure; similarly, after
an ACL has been modified, the old ACL should not be used
to distribute content.

The fifth assurance is towards authenticated denial to
prevent improper denial of service to a subscriber with a
legitimate request. For this purpose, the infrastructure is
expected to respond to every query. The response should
either provide the requested content - or should contain a
justification to convince the user that the requested content
cannot be provided.

The sixth assurance is required to address some of the
undesirable side effects of providing authenticated denial.
In providing the proof of denial no information that was not
explicitly queried should be provided1.

III. OVERVIEW OF PROPOSED APPROACH

In the proposed model, the untrusted infrastructure I has
access to a trusted module T which serves as the TCB for
I. As every component of I is untrusted, the nature of the
specific components of I (like personnel, computers and
software) is irrelevant for our purposes. Some component
of the I communicates with the module T using fixed
interfaces exposed by the module. For example, the module
T could be plugged into a computer in I. Alternately,
the module T could be housed in a secure location and
connected over a (possibly untrusted) network to a computer
in I.

The module T is assumed to be capable of computing a
shared secret with any user. Due to a wide variety of options
that exist to establish such a shared secret, in this paper
we shall ignore specific features in the module required
to satisfy this requirement. We shall simply represent by
Ki the secret common to a user ui and the module T.
Such secrets are employed by users and the module T to
authenticate requests and responses using message authen-
tication codes (MAC), and for securely conveying content
encryption secrets. The module is assumed to be capable
of executing some simple functions Fadl(), Finc(), Fupd(),
Fcac(), and Fsnd() which are described algorithmically later
in this paper.

In the proposed approach all desired assurances enumer-
ated in Section II-A are guaranteed to the extent we can trust

1Ignoring such assurances in practical applications have sometimes
resulted in attacks that undermine the utility of the protected system. For
example, in DNSSEC [3], the security protocol for assuring the operation of
a domain name system (DNS) server the unsolicited DNS records obtained
from querying non existent records result in the undesirable “DNS walk”
problem [4].



the integrity of the module. Specifically, that the module is
read-proof implies that only a user uj and the module have
access to the secret Kj , and thus impersonation of messages
is infeasible. That the module is write-proof implies that the
functionality of the module is cannot be modified even by
entities who have physical access to the module.

A. TCB Functions

In the proposed model TCB function Finc() is used for
making a content available for distribution. The inputs to
Finc() are various parameters (like content hash, encryption
secret, ACL, etc) associated with the content cj , and are
authenticated by the owner oi of the content for verification
by T using a MAC computed using the secret Ki. After
executing Finc() the module outputs an acknowledgment
message for verification by oi.

The TCB function Fupd() is used to modify the content
or modify the ACL associated with the content. Inputs of
the function Fupd() are authenticated by a user ua who is
(authorized to modify the content/ACL) using the secret Ka

shared with the module. The output of the module is an
authenticated acknowledgment. If the user is not authorized,
the module will respond with an acknowledgement for a
message indicating failure to carry out the request.

The input to Fsnd() is an authenticated request from a
user uq for some content cj . Only if the user is authorized
to receive the content will the module convey the content
encryption secret sj and content hash γj (to enable veri-
fication of content integrity) to user uq . If the user is not
authorized, the module will respond with an acknowledge-
ment indicating inability to carry out the request.

In all exchanges between users and the module, I is an
untrusted middle man. The middle man I is expected to
faithfully perform some tasks in order to provide additional
inputs v required for the TCB functions, and receive an
authenticated acknowledgement from the module, which can
then be delivered to the user. More specifically, if I does
not execute such tasks faithfully, then I will not be able to
obtain an authenticated response from the module to satisfy
the user.

Unlike the three functions above, the inputs to Fadl() and
Fcac() do not include authenticated requests from users.
Fcac() is employed by I to request the module to verify
access control permission for a user, and generate a certifi-
cate vouching for the same. As this certificate is intended for
verification by the same module (which issues the certificate)
at a later time, the self-certificate is simply a MAC computed
using a secret known only to the module T.

Interface Fadl() is used by I to request the module to
insert or delete a leaf in an index ordered merkle tree
(IOMT). The IOMT, which is treated in greater depth in
the next section, is a simple extension of the better known
(plain) merkle hash tree [2]. The main differences between
a “plain” merkle tree and an IOMT are a) some additional

rules to be observed in the IOMT for inserting and deleting
leaves - to ensure uniqueness of indexes, and b) the ability
to efficiently deal with any number of leaves - even if the
number of leaves is not a power of 2.

In the proposed approach each leaf of the IOMT cor-
responds to a content. Associated with a set of m leaves
(where m is the total number of content identifiers) are
2m−1 hashes which are the “internal nodes” of the tree. The
number m is assumed to be dynamic - m grows as content
with new labels are introduced into the system (a leaf is
inserted into the IOMT) for distribution and may reduce (an
IOMT leaf is deleted) as their circulation is cut off by the
owner (or an entity authorized by the owner). The IOMT is
also used to efficiently represent the ACL associated with
each content.

Untrusted I stores all m contents, 2m − 1 hashes, and
some values associated with each content (leaf). Specifically,
such values associated with a content cj include a) content
owner ui, b) content hash γj , c) ACL Aj for the content,
and d) an encrypted version of the content encryption secret
sj .

The module T stores only i) a single hash - the root ξ of
the IOMT; and ii) a secret2 S (known only to the module)
used for encrypting the content encryption key.

Computationally, the module performs simple
sequences of hash operations to execute functions
Fadl(), Finc(), Fupd(), Fcac(), and Fsnd(), for which the
module requires temporary scratch-pad memory for a mere
O(log2m) hashes (at most a few kB).

B. Index Ordered Merkle Tree

An index ordered merkle tree is a binary tree. A leaf of
the IOMT is of the form (a, va, a

′) where a is an index, va
is a value associated with the index, and a′ is the next index.
A leaf with index 0 is considered to be empty. A nonempty
leaf (a, va, a′) in the tree indicates that no leaf with an index
that is covered by (a, a′) exists in the tree. Specifically, an
index c is covered by (a, a′) if cov(c, (a, a′)) is true, where

cov(c, (a, a′)){
RETURN (a < c < a′) ∨ (c < a′ < a) ∨ (a′ < a < c);
}

A leaf (a, va, a′ = a) indicates that it is the sole leaf of the
tree.

The IOMT employs two functions HL() and HN () - both
of which are derived from a cryptographic hash function
h() (for example, SHA-1). The former takes an IOMT leaf
as input and outputs a hash. The latter, takes two hashes
as inputs and outputs a hash. The two functions can be
expressed mathematically as follows.

v = HL(a, va, a
′) =

{
h(a, va, a

′) if a 6= 0
0 if a = 0

(1)

2In addition, the module may require to store one or more secrets that
enable the module to compute pairwise secrets.



L0 L1 L2 L3 L4 L5 L6 L7 L8 L9 La Lb Lc Ld Le Lf

v0 v1 v2 v3 v4 v5 v6 v7 v8 v9 va vb vc vd ve vf

v01 v23 v45 v67 v89 vab vcd vef

v03 v47 v8b vcf

v07 v8f

ξ

Figure 1. An IOMT tree with 16 leaves. Nodes v67, v47, v07 and r are
“parents” of v6. v07 is the “immediate parent” of v6. v7 is the sibling
of v6, and v45, v03 and v8f are siblings of it’s parents. The set of such
siblings {v7, v45, v03, v8f} is the set of nodes “complementary” to v6.
Similarly, the parents of v23 are v03, v07 and ξ. The complementary set
of v23 is {v01, v45, v8f}.

p = HV (u, v) =

 u if v = 0
v if u = 0
h(u, v) if u 6= 0, v 6= 0

(2)

In Figure 1 the hashes v1 · · · vf at level 1 of the tree (just
above the leaves L1 · · ·Lf ) are “leaf nodes” computed as
vi = HL(Li). The tree has dlog2me levels. Two adjacent
nodes at a level i are hashed together using HN () to compute
the immediate parent at level i+ 1 (for example, v07 is the
parent of v03 and v47 - or v07 = HN (v03, v47). A tree with
m leaves (L = log2m levels) has 2L−i+1 nodes at level i
(m at level 1, m/2 at level 2, and so on and a single node
(the root of the tree) at level L.

If all leaves are empty then all nodes at level 1 are zero (as
HL() applied to an empty leaf yields 0). Consequently the
root of the tree is zero. An IOMT with root ξ = 0 zero can
be considered as a tree with any number of empty leaves.
A root of an IOMT with a single leaf L is simply HL(L).

To see that only 2m − 1 nodes will need to be stored
even if m is not a power of 2, consider a scenario where
only 14 leaves are non empty. If Le and Lf are empty,
then ve = vf = vef = 0 and vcf = vcd. Thus, the nodes
ve, vf , vef , vcf need not be stored. Similarly, if only Lf were
empty, then vf = 0 and vef = ve need not be stored.

Given any v at a level i, and the complementary set v with
k nodes, a sequence of HN () operations map v to v’s parent
at level k+ i. We shall denote by p = f(v,v) the sequence
of such operations. As a specific example (in the figure)
corresponding to v = v67, v = {(v45, 0), (v03, 0), (v8f , 1)}
includes 3 internal nodes and a bit associated with each node
which indicates whether the internal node is to the left (bit
set to 0) or right (bit set to 1) of v = v67. The function f()
in this case executes HV () three times starting with v67 as
x1 = HV (v45, v67) = v47, x2 = HV (v03, x1) = v07 and
x3 = HV (x2, V8f ) = ξ.

More specifically, if v is a set of L complementary hashes
(along with L bits), then ξ = f(v,v) maps a leaf node v
to the root. Specifically, if provided a leaf Li is considered
as genuine only if ξ = f(vi,vi) where vi = HL(Li). The
implication of such genuine a leaf Li = (a, va, a

′) is are i)
a value va is associated with index a, and ii) no leaf exists
for an index covered by (a, a′).

1) Insertion and Deletion of Leaves: Only one leaf can
exist in an IOMT for any index. Thus, a leaf with an index
c can be inserted only if no leaf with index c exists - a
situation which can be inferred by verifying a leaf which
covers c. Specifically, to insert a leaf for an index c two
leaves i) an empty leaf (0, 0, 0) and ii) a leaf for some other
index a - say (a, va, a

′) such that (a, a′) covers c needs to
be demonstrated to be consistent with root ξ. After insertion
the two leaves will be modified to (c, vc, a

′) and (a, va, c)
respectively. Similarly, when a leaf (x, vx, x

′) needs to be
deleted, another leaf (b, vb, b′ = x) needs to be demonstrated
to be consistent with the root ξ. After deletion, the former
leaf becomes (0, 0, 0) and the latter becomes (b, vb, x

′).
Except for the case of insertion of the first leaf or deletion

of a sole leaf, to insert or delete a leaf, two leaves will need
to be modified simultaneously - as for insertion of the first
leaf the root ξ = HL(L) where L = (a, va, a) is the sole
leaf; for deletion of a sole leaf the root is simply set to zero.

C. Access Control List

The access control list Ai can be seen as a list of two
tuples of the form (oi, ai) where oi is the identity of a user
assigned privilege ai. We shall assume that ai = 0 implies
that the user oi is not granted access, and ai = 1 to imply
that the user oi is granted access. We shall also assume an
empty access control list to imply that the content can not
be distributed.

In such a list Aj = {(o1, a1), (o2, a2), . . . , (ok, ak)}
associated with some content cj , and ordered by ascending
order of o (or o1 < o2 < · · · < ok), that a tuple for
oi+1 follows oi (in the list . . . , (oi, ai), (oi+1, ai+1), . . .)
implies that no tuple exists for an identity that falls
between oi and oi+1. In such a case it is more
meaningful to see the ACL as a three tuple of the form
{(o1, a1, o2), (o2, a2, o3), . . . (on−1, an−1, on), (on, an, o1)}.

For example, in a ACL

A = {(o1, 1, o2), (o2, 0, o3), (o3, 1, o4), (o4, 1, o1)} (3)

1) the implication of the first tuple (o1, 1, o2) is that o1
is explicitly granted access, and that all users o1 < x < o2
are denied access;

2) from the second tuple, o2 is explicitly denied access;
all users o2 < x < o3 are granted access;

3) o3 is explicitly granted access; all users o3 < x < o4
are denied access;

4) o4 is explicitly granted access; as (o1 < o4), users
x > o4, and users x < a1 are denied access;



In some scenarios the privileged users may have different
types of privileges. For example, we shall assume that ai = 2
implies that the user oi is allowed to modify the content,
and ai = 3 implies that oi is permitted to modify the
content, and the ACL for the content. For example, if Aj =
{(o1, 0, o2), (o2, 3, o3), (o3, 1, o4), (o4, 0, o5), (o5, 2, o1)},

1) o1 is denied access; all users o1 < x < o2 are provided
regular access;

2) o2 is granted enhanced privilege to modify the ACL;
all users o2 < x < o3 are denied access;

3) o3 is provided regular access; all users o3 < x < o4
are denied access;

4) o4 is denied access; all users o4 < x < o5 are granted
regular access;

5) o5 is explicitly granted privilege to modify the content;
users x > o5 and x < a1 are denied access;

In the proposed approach each tuple in an ACL is seen
as a leaf of an IOMT. The root α of such an IOMT is a
succinct representation of the ACL. Specifically, given the
value α, a set of hashes v and an IOMT leaf (ur, ar, u

′
r)

the module can verify the leaf against the root α and infer
the access control restrictions associated with user uq = ur
or any user uq covered by (ur, u

′
r).

D. IOMT for Storing Content Leaves
An IOMT leaf for storing values associated with a content

cj takes the form (cj , vj , c
′
j) where c′j is the next label and

vj = h(ui, γj , s
s
j , αj) is a one way function of the owner

ui, content hash γj , ssj (the encrypted version of content
encryption secret sj) and αj (the succinct representation of
the ACL associated with the content cj). The root ξ of this
IOMT changes whenever a content is introduced, or deleted,
or if the ACL for a content is modified. The dynamic root
ξ of this IOMT is maintained inside the module.

Given values cj , c
′
j , ui, γj , ssj , αj along with a set of

hashes v the module T can verify the integrity of all
values associated with the content cj (by computing v =
HL(cj , vj = h(ui, γj , s

s
j , αj), c

′
j), and then verifying that

f(v,v) = ξ.
A leaf with middle value zero, say (cj , 0, c

′
j) is a “place-

holder” for a content and can be used to reserve a content
label. After content specific values are received for the
content from the owner, such values are bound to the leaf
by appropriately setting value vj and updating the root ξ.

Unlike the IOMT for ACL which is prepared at one go
by the owner or an authorized agent, various leaves of the
content IOMT are provided by different content owners.
Thus, for maintaining such an IOMT the module needs the
ability to insert and delete IOMT leaves.

IV. TCB FUNCTIONS

The resource limited module T securely stores a secret
S, spontaneously generated inside the module, and the root
ξ of an IOMT. It is assumed that the module can compute
a secret Ki it shares with any user ui.

A. Secret S

This secret S (spontaneously generated inside the module)
is used by the module to encrypt content secrets entrusted
to the module. Specifically, for a content cj associated with
a owner ui, the content encryption secret sj is conveyed by
the owner ui to the module as s′j = h(Ki, µij)⊕ sj , where
µij = h(cj , γj , αj , sj ,Ki) is a message authentication code
(MAC) used to securely convey the content related values
to the module T. The secret sj is then re-encrypted by
the module as ssj = h(S, cj , γj) ⊕ sj and handed back to
untrusted I for storage.

The secret S is also used by the module to generate
self-certificates for verification by itself at a later time.
Specifically, using the function Fcac() the module can be
requested to issue a certificate of the form µs = h(u, a, α, S)
which states that “a user with identity u and access control
permission a is consistent with access control digest α. The
function Fcac() can be described algorithmically as follows:

Fcac((ur, ar, u′r),v, uq){
IF (uq = ur) aq := ar;
ELSE IF(cov(uq , (ur, u′r))) aq := (ar = 0)?1 : 0
ELSE RETURN;
α = f(HL(ur, ar, u

′
r),v);

RETURN µs := h(uq , aq , α, S);
}

The inputs to Fcac() include a leaf of a ACL IOMT with
root α along with the hashes v necessary to verify the leaf
against α. The function Fcac() will output a certificate only
if uq = ur or if uq is covered by (ur, u

′
r). The values

uq, aq, α and µs satisfying µs = h(uq, aq, α, S) can be
provided to the module at any later time to convince the
module that “for a content with ACL digest α, a user uq
has access restriction aq .”

B. Addition and Deletion of IOMT Leaves

In general, to add or delete an IOMT leaf two leaves
need to be updated. Two leaf hashes vl and vr can be
simultaneously mapped to the root r by mapping the leaf
hashes to the common parent, and then mapping the common
parent to the root. Let vp be lowest common parent of
two leaf nodes vlp and vrp, and let vp = HV (v

l
p, v

r
p) (vlp

and vrp are the left and right child of vp), vlp = f(vl,vl),
vrp = f(vr,vr), and r = f(vp,vp). Now,

ξ = f(HV (f(vl,vl), f(vr,vr)),vp) (4)

The interface Fadl() can be used to insert a leaf for an
index a (if a is covered by another leaf), or deleting a
leaf with index a (if another leaf exists that points to a).
Specifically, when a leaf is inserted the middle value is
set to 0. Only leaves with middle value 0 can be deleted.
Henceforth in this paper we shall refer to an IOMT leaf of
the form (a, 0, a′) as a “place-holder.”

The module functionality Fadl() for inserting or deleting
a place holder can be algorithmically described as follows:



ξ = Fadl((l, vl, l
′), (r, vr, r′), i,vl,vr,vp){

IF (l = 0) ∧ (r = 0)//Insertion of first leaf
hl := 0;h′l := HL(i, 0, i);hr := 0;h′r := 0; //

ELSE IF (l = 0) ∧ cov(i, (r, r′))
hl := 0;hr := HL(r, vr, r

′);h′l := HL(i, 0, r
′);h′r := HL(r, vr, i);

ELSE IF (r = 0) ∧ cov(i, (l, l′))
hr := 0;hl := HL(l, vl, l

′);h′r := HL(i, 0, l
′);h′l := HL(l, vl, i);

ELSE RETURN;
ξ1 = f(HV (f(hl,vl), f(hr,vr)),vp); //Root before insertion
ξ2 = f(HV (f(h′l,vl), f(h

′
r,vr)),vp); //Root after insertion

IF (ξ = ξ1) ξ := ξ2; // insert index i
IF (ξ = ξ2) ξ := ξ1; //delete index i
RETURN ξ;
}

I invokes this function whenever a new content is created
or when distribution of an existing content has to be stopped,
or when queried for an non existent content. Specifically,

1) if a new content with unique label cj is made available
for distribution, a place holder for index cj is inserted
to reserve a leaf for cj (after this function Fupd() will
be used to bind the content related values to the middle
value of the leaf).

2) if a query for a content cJ is made and no content
exists for index cj , a place holder for index cj is
inserted; soon after the query is answered the place-
holder may be deleted.

3) The function Fuac() (to update ACL) is employed to
convert a leaf to a place-holder (by setting the middle
value to 0) for halting the distribution of the content.
The place holder can be deleted if required using
Fadl()

To insert a place holder, two leaves - an empty leaf, and
a covering leaf (j, vj , j

′) (or cov((j, j′), i) is TRUE) are
provided as inputs to Fadl(). To compute the root from
two leaves three sets of complementary hashes are provided
to the module. The module computes the roots ξ1 and ξ2
- the roots before and after insertion respectively. If the
current root ξ is either ξ1 or ξ2 it is reset to ξ2 or ξ1
respectively. Specifically, if the current root is ξ1, and if
the leaves provided satisfy the condition for inserting index
i, by setting the root to ξ2 a leaf with index i is inserted. On
the other hand, for the same inputs, if the current root is ξ2
then by setting the root to ξ1 a leaf corresponding to index
i is deleted. Thus, even while Fadl() only verifies the pre-
requisites for inserting a place-holder, Fadl() can be used
for both insertion and deletion of place holders.

C. Distribution of Content

The owner ui of the content cj performs the following
steps to make the content available to users:

1) assign a unique label cj to the content;
2) choose a random content encryption secret sj and

encrypt content;
3) compute hash γj of the encrypted content;
4) compute root αj of an ACL IOMT Aj ;

5) submit to I, i) the encrypted content, ii) access control
list Aj , iii) γj and iv) values µij , s′j where

µij = h(cj , γj , αj , sj ,Ki), s
′
j = h(Ki, µij)⊕ sj , (5)

and Ki is a secret shared between user ui and the module
T; γ′j = 0 implies that this is the first version of the content.

On receipt of such a message from user ui, I performs
the following steps:

1) reserve label cj for user ui; for this purpose I
employs the interface Fadl() exposed by the module T.
At the end of this process a place holder (cj , 0, c

′
j) con-

sistent with the IOMT root ξ will be available satisfying
f(HL(cj , 0, c

′
j),vj) = ξ.

2) evaluate αj using the ACL;
3) employ module interface Finc() to supply values that

include ui, αj , γj , s′j , µij , provided by the user and values
cj , c

′
j and vj associated withe the corresponding IOMT leaf.

On completion of the execution of Finc() the module will
outputs an acknowledgement MAC

µ′ij = h(ACK,µij ,Ki). (6)

The function Finc() can be described algorithmically as
follows:

Finc(cj , c
′
j ,vj , ui, γj , αj , s

′
j , µij){

IF f(HL(cj , 0, c
′
j),vj) 6= ξ) RETURN;

sj = h(Ki, µij)⊕ s′j ;
IF (h(cj , γj , αj , sj ,Ki) 6= µij) RETURN;
ssj := sj ⊕ h(S, cj , γj); vj := h(ui, γj , s

s
j , αj);

ξ := f(HL(cj , vj , c
′
j),v);

RETURN ξ, ssj , µ
′
ij = h(ACK,µij ,Ki);

}

4) store ssj , and make appropriate modifications to the
parent nodes of the updated IOMT leaf to be consistent with
the new root ξ;

5) send the acknowledgment MAC µ′ij to the user ui.
On receipt of the acknowledgment the owner ui is assured

(to the extent the owner can trust the module T) that all the
expectations of the owner with regards to distribution of the
content will be met by I. More specifically, this trust is
based on the premise that i) it is infeasible for any entity
except the module T and user ui to compute the MAC, and
that ii) the module functionality cannot modified.

D. Updating Content and/or ACL

To update the content cj , a user ua authorized to do
so encrypts the modified content with a new key sju and
computes the hash γju of the updated content. The user
then submits

µaj = h(cj , γj , αj , γju, αju, sju,Ka), s
′
ju = h(Ka, µaj)⊕ sju,

to I.
On receipt of the request to update content I employs

interface Fcac() to receive a certificate attesting the access
control permission for ua. Then, I employs interface Fupd()
shown below to update the IOMT leaf for cj .



Fupd(cj , c
′
j , ui, γj , s

s
j , αj ,vj , ua, aa, γju, αju, s

′
ju, µaj , µs){

IF (µs 6= h(ua, aa, αj , S)) RETURN; //Invalid certificate
sju = s′ju ⊕ h(Ka, µaj);

IF (µaj 6= h(cj , γj , αj , γju, αju, sju,Ka)) RETURN; //Invalid Request
vj := h(ui, γj , s

s
j , αj);

IF f(HL(cj , vj , c
′
j),vj) 6= ξ) RETURN;

IF (aa < 2) ∨ ((aa < 3) ∧ (αju 6= αj)); //user not authorized
RETURN µ′aj = h(ACK,µaj , 0,Ka);

IF (αju = 0)vju := 0;
ELSE ssju := sju ⊕ h(S, cj , γju); vju := h(ui, γju, s

s
ju, αju);

ξ := f(HL(cj , vju, c
′
j),vj);

RETURN ξ, ssju, µ
′
aj = h(ACK,µaj ,Ka);

}

If the user is not authorized, this function returns µ′aj =
h(ACK,µaj , 0,Ka); if the user is authorized the function
returns µ′aj = h(ACK,µaj ,Ka) and the encrypted version
ssju of the new content encryption key sju for storage by I.

When the user ua receives the MAC µ′aj the user ua
is convinced that the content has been modified and thus,
form this point onwards, the old content hash γj cannot be
replayed by I.

E. Querying Content

Any user can send a query for any content. To query a
content cj a user uq (who shares a a secret Kq with T)
computes a MAC

µqj = h(cj , ν,Kq) (7)

where ν is a random nonce selected by the user. The user
sends values uq, cj , ν and µqj to the DC.

If the queried content does not exist calI inserts a place
holder for cj . If the content exists and the user uq is
authorized access, the ACL associated with the content
will possess a tuple of the form (uq, aq > 0, u′q) or
(ur, ar = 0, u′r) where (ur, u

′
r) covers uq . On the other

hand, if the user uq is not authorized, the ACL will possess
a tuple (uq, aq = 0, u′q) or (ur, ar > 0, u′r) where (ur, u

′
r)

covers uq . In either case, I can employ function Fcac() to
obtain a certificate mus = h(uq, aq, αj , S) from the module.

This certificate, along with values cj , ν and µqj sent by the
user are provided to the module using the interface Fsnd(),
which can be described algorithmically as follows:

Fsnd(cj , c
′
j , ui, γj , s

s
j , αj ,v, uq , aq , µs, ν, µqj){

IF (µqj 6= h(cj , ν,Kq)) RETURN;
vj := (ui = 0)? 0 : h(ui, γj , s

s
j , αj);

IF f(HL(cj , vj , c
′
j),v) 6= ξ) RETURN;

IF (vj = 0) RETURN µ′qj := h(cj , ν, 0, 0,Kq); //Content does not exist
IF (h(uq , aq , αj , S) 6= µs) RETURN;
IF (aq > 0)RETURN µ′qj = h(cj , γj , sj , ν,Kq), s′j = h(Kq , µ′qj)⊕ sj ;
ELSE RETURN µ′qj = h(cj , 0, 0, ν,Kq), 0; //No access
}

If the user is authorized access, the module returns µ′qj =
h(cj , γj , sj , ν,Kq) and s′j = h(Kq, µ

′
qj) ⊕ sj . When such

values are conveyed to the user by I, the user gains access to

the content encryption secret sj = s′j ⊕ h(Kq, µ
′
qj) and can

verify the MAC µ′qj . The user may now fetch the encrypted
content from untrusted components of the DC, verify its
integrity, and decrypt the content using the secret sj .

If the user is not authorized, or if the queried content does
not exist, the module outputs a MAC µ′qj = h(cj , ν,Kq).
When I relays µ′qj values to the querier, the querier is
assured (to the extent the module is trusted) that the content
does not exist, or the user does not have access to the
content.

V. RELATED WORK AND CONCLUSIONS

In this paper we presented a security solution for a generic
content distribution system by identifying and leveraging a
minimal trusted computing base for a content distribution
infrastructure. The proposed solution caters for dynamic
content associated with dynamic access control lists.

In the proposed approach no component of the content
distribution infrastructure is trusted to realize the desired
assurances. Only a simple hardware module T is trusted.
Due to the generic nature of the proposed CDS, such a
module (with fixed functionality) can be mass produced and
employed for a wide range of content distribution systems.

In comparison, prior approaches using the TPM-TCG
[12] platform involve verification of the content distribution
servers for the state of operation. This results in unwarranted
trust in several hardware components such as CPU, RAM,
and any peripheral that has direct access to the RAM,
etc. The problem is further amplified by the feasibility of
TOCTOU [9] attack, which exploits the ability to modify
code/data stored in RAM after it is loaded, but before it is
executed. The TCG approach also depends on verification
of every software module that was loaded on to the system,
which involves verification and tracking of every version
and update that a software module undergoes, rendering this
approach far from practical.

The virtual counter approach by Sarmenta. Et. Al. [10],
aims at addressing the issues with the TCG approach by
enhancing the ability of TPMs to maintain a merkle tree
used in conjunction with the monotonic counter of the TPM.
The monotonic counter is used to generate virtual counters,
which are then attached to each file and stored as leaves of
the Merkle Tree. This approach has a limited scope in that
it only tries to address replay attacks. Specifically, the goal
is to ensure that once a content has been modified, the older
version can not be replayed by the server. The approach
in [10] does not support access control policies or support
authenticated denial.

An attack against the scheme in [10] were demonstrated
in [11]. The attack leverages the fact that there is nothing
that prevents the untrusted server to bind multiple virtual
counters to a file. Such an attack is no possible against
the proposed approach as employing content identities for
indexing leaves of an IOMT ensures that it is not possible



to have multiple leaves corresponding to the same index.
the untrusted server can generate multiple counters for the
same content and then be able to replay an older version.
The model also does not support authenticated denial for the
content it does not possess.

Models for content distribution and security mechanisms
for such models, have attracted substantial attention in the
literature. Simple models that cater only for static content
and ACL employ broadcast encryption [5], [6]. Specifically,
in such systems the ACL associated with a content is a
list of users/devices that are allowed access to the content,
and is specified at the time the content is made available
for distribution. The content is accompanied by a message
key block consisting of various encryptions of the content
encryption key such that at least one can be decrypted by
a privileged device, while none can be decrypted by any
revoked device.

More sophisticated models with dynamic content and
ACL are generally considered under the umbrella of publish-
subscribe systems [7],[8]. In such systems the infrastructure
may consist of several servers, typically classified into
servers at the provider end, consumer end, and core servers.
While several security solutions have been proposed, they
rely (to varying degrees) on the trustworthiness of servers
in the infrastructure. Specifically in such systems the server
is trusted to not replay old content, and not deny service
to authorized users. One of the main motivations for the
proposed approach stems from the lack of a suitable ra-
tionale for trusting complex servers employed by the CDS
infrastructure.

ACKNOWLEDGEMENT

This research was partly funded by the Department of
Homeland Security (DHS)-sponsored Southeast Region Re-
search Initiative (SERRI) at the Department of Energy’s Oak
Ridge National Laboratory.

REFERENCES

[1] B. Lampson, M. Abadi, M. Burrows, E. Wobber, “Authen-
tication in Distributed Systems: Theory and Practice,” ACM
Transactions on Computer Systems, 1992.

[2] R.C. Merkle “Protocols for Public Key Cryptosystems,” in
Proceedings of the 1980 IEEE Symposium on Security and
Privacy, 1980.

[3] R. Arends, R. Austein, M. Larson, D. Massey, S. Rose “RFC
4033: DNS Security: Introduction and Requirements,” March
2005.

[4] B. Laurie, G. Sisson, R. Arends, Nominet, D. Blacka, “DNS
Security (DNSSEC) Hashed Authenticated Denial of Exis-
tence,” RFC 5155, March 2008.

[5] A. Fiat, M. Noar, “Broadcast Encryption,” Lecture Notes in
Computer Science, Advances in Cryptology, Springer-Verlag,
773, pp 480–491, 1994.

[6] D. Noar, M. Noar, J. Lotspiech, “Revocation and Tracing
Routines for Stateless Receivers,” Lecture Notes in Computer
Science, Advances in Cryptology, Springer-Verlag, 2139,
2001.

[7] C. Wang, A. Carzaniga, “D. Evans, and A. Wolf. Security
issues and requirements for internet-scale publish-subscribe
systems,” in Proc.of Hawaii Intl. Conf. on System Sciences
(HICSS), 2002.

[8] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermar-
rec, “The many faces of publish/subscribe,” ACM Computing
Surveys (CSUR), vol. 35, no. 2, pp. 114131, 2003.

[9] S. Bratus, E. Sparks, and S. W. Smith, “TOCTOU, Traps,
and Trusted Computing,” in Trust 08: Proceedings of the 1st
International Conference on Trusted Computing and Trust in
Information Technologies, pp. 14–32, 2008.

[10] L. F. G. Sarmenta, M. van Dijk, C. W. O’Donnell, J. Rhodes,
and S. Devadas, “Virtual Monotonic Counters and Count-
Limited Objects using a TPM without a Trusted OS,” in
Proceedings of the first ACM workshop on Scalable trusted
computing, STC ’06, (New York, NY, USA), pp. 27–42,
ACM, 2006.

[11] S. D. Mohanty, M. Ramkumar, “Securing File Storage in
an Untrusted Server Using a Minimal Trusted Computing
Base,” First International Conference on Cloud Computing
and Services Science, Noordwijkerhout, The Netherlands,
May 2011.

[12] “TCG Specification: Architecture Overview, Specification Re-
vision 1.4,” August 2007.


